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Because of these differences, the conditional proba- 
bility distributions which will be of most use may 
vary from one case to the other. Similarly, the phasing 
procedures which will be most effective may vary 
from one case to the other. 

In this paper we have focused on the similarities 
among these cases, for the following reasons. In a 
direct-methods probabilistic approach, the derivation 
of a joint probability distribution is often a lengthy 
initial task. As shown here, this analysis need only 
be done once, if it is formulated in a general way. It 
is also an easy task to translate a distribution derived 
for a specific case into more general terms. Con- 
sequently, much of the already available theoretical 
foundation for either SIR, SAS or partial/complete 
structure data may be reformulated so that it can be 
used in any example of isomorphous data sets. For 
example, the joint probability distribution of a triplet 
of isomorphous data sets (Fortier, Weeks & Haupt- 
man, 1984b) can be translated easily into any case of 
interest, such as the case of a native protein and a 
single heavy-atom derivative for which Friedel-pair 
data are available. Thus, as in the algebraic approach 
presented by Karle (1984, 1985), general formulae 
can be used on a large variety of combinations of the 
various cases. Finally, while there is still little 
experience in the use of direct methods in 
macromolecular structure determination, much valu- 
able experience, both practical and theoretical, has 
been gained in the use of direct methods for ab initio 
phasing of isomorphous data sets in small molecules. 
In particular, much can be learned from the vast 

amount of expertise that has been gained in the appli- 
cations of direct methods to the problem of partial 
structure expansion in the D I R D I F  system (Beur- 
skens et al., 1981). 
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Abstract 

R factors in fiber diffraction are generally lower than 
in conventional crystallography, because of the cylin- 
drical averaging of fiber diffraction data. The proba- 
bility distributions for fiber diffraction intensities, 
analogous to Wilson's distributions for crystal diffrac- 
tion intensities, are derived, and from these the largest 
likely values of R are estimated. These values depend 
on the size and symmetry of the diffracting particle 
and on the resolution of the analysis, and range from 
0.586 for systems for very high symmetry (as in crystal 

diffraction) to much lower values for systems of low 
symmetry. 

Introduction 

The R factor, R = E IIFobsl- IFca,cll/Z IFobsl, has been 
used for many years as an index of the quality of 
crystallographic structure determinations. It is also 
widely quoted in descriptions of structures deter- 
mined by refinement of models against fiber diffrac- 
tion data, although in fiber diffraction IF[ must be 
replaced by 11/2. (In fiber diffraction, IFI is not gen- 
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erally equal to 11/2 because of the cylindrical averag- 
ing of the data.) Wilson (1949) derived the probability 
distribution of X-ray intensities in conventional crys- 
tallography. For crystals without a center of sym- 
metry, he showed that the probability that I will lie 
between I and I + d I  is 

P ( I )  d l  = Z--I exp (-I/Y~) d I  

or, equivalently 

P ( F )  d F =  2F  E - '  exp ( - F 2 / D  d F  

where )-'. = Y.ff, and fj is the scattering factor of the 
j th  atom in the unit cell. He went on to show (Wilson, 
1950) that the largest likely value for the R factor 
from an acentric crystal is 2 - 2 1 / 2 =  0-586. 

In fiber diffraction, the R factor for a structure in 
which the atomic coordinates are uncorrelated with 
the true atomic coordinates is expected to be lower 
than in crystallography. This is because in a fiber 
specimen the diffracting particles are randomly orien- 
ted about the fiber axis, so the diffraction pattern is 
cylindrically averaged. The diffracted intensity at 
reciprocal-space radius R on layer line l is 

I ( R , l ) = ~ ,  G,,.t(R)G*.,(R) (1) 
71 

(Waser, 1955; Franklin & K_lug, 1955), where n is the 
order of the Bessel functions J,, that contribute to the 
complex Fourier-Bessel structure factor G (Klug, 
Crick & Wyckoff, 1958). For a helical structure, n is 
restricted by the selection rule l = tn + urn, where m 
is an integer and there are u subunits in t turns of 
the helix. The number of significant G terms in (1), 
N, depends on the symmetry and dimensions of the 
diffracting particle, and on the value of (R, l). For 
example, for tobacco mosaic virus (TMV) at 2.9 
resolution, N can be as large as 8. Equation (1) is 
the analog of the crystallographic equation 

l (h , k ,  1) * = F h k i F h k  I . 

It is useful to define a 2N-dimensional vector r~, 
whose components are the real and imaginary com- 
ponents of the G terms contributing to a particular 
intensity I (R,  l). From (1), the norm off~, ~d, is equal 
to 1 I/2. Just as the largest likely R factor for an 
acentric crystal, for which the structure factor F is 
two-dimensional, is smaller than for a centric crystal, 
where F is one-dimensional (Wilson, 1950), the R 
factor for a fiber, with (~ multidimensional, is even 
lower. Qualitatively, it is easier to predict the sum of 
several data, such as ~, than to fit individual data 
points, such as F. 

Recent developments in fiber diffraction analysis 
have created a need for a quantitative understanding 
of fiber diffraction R factors. TMV has been refined 
to an R factor of 0.096 at 2.9 A resolution (Namba, 
Pattanayek & Stubbs, 1989), and the filamentous bac- 
teriophage Pfl to 0.24 at 4 A  (Nambudripad & 

Makowski, personal communication). In the future, 
structure determinations of a wide variety of filamen- 
tous viruses, cytoskeletal filaments and other 
macromolecular assemblies will depend on the fur- 
ther development of all the forms of analysis that are 
now used routinely in protein crystallography, includ- 
ing refinement and the understanding of indicators 
of the progress of refinement such as R factors. In 
contrast to conventional crystallography, fiber diffrac- 
tion R factors for systems of different size and sym- 
metry are not directly comparable to each other. One 
solution to this problem is to determine the R factor 
expected for a totally wrong determination of a par- 
ticular structure, and to compare this with an experi- 
mental R factor in order to assess the reliability, of a 
model. 

In this paper, I will attempt to quantify these gen- 
eral statements, and to predict the values of the largest 
likely R factors in fiber diffraction. It will be shown 
that these values depend on the number of terms in 
(1), and therefore on the diameter and symmetry of 
the diffracting particles, and on the resolution of the 
data. The probability distributions of X-ray intensities 
in fiber diffraction will be derived, following the 
approach used by Wilson (1949), and used to calcu- 
late the largest likely values of R. 

Theory 
Definitions and preliminary results 

Following Wilson (1950), we define 

F 

H ( F ) =  I F P ( F )  dF  (2) 
0 

and note that H ( m ) : ( I F I ) .  In order to avoid con- 
fusion with standard fiber diffraction notation, we 
use the symbol H in place of Wilson's G. Wilson 
showed that, for a random distribution of atoms, 

R = 2 -  4(H(F)) /([FI) .  (3) 

The derivation is valid for all distributions of F, and 
is therefore applicable to fiber diffraction, using ~d in 
place of F. In order to use (3) for fiber diffraction 
data, P ( ~ )  and thence H(~3) must be derived. 

To derive P(~3) in the next section, we will need 
to know the integral VM over all points r in M- 
dimensional space such that 

M 
2 

r 2 =  ~ x i .  

i = l  

This corresponds to the circumference of a circle in 
two dimensions, and the surface area of a sphere in 
three. If we assume that the integral VM-1 over all 
points d such that 

M 
2 d 2= Z x, 

i=1 
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is known, then VM is the integral over xM of all points 
such that d2+XZM=r 2, weighted by VM_I. Setting 
d = r sin 0, we see that this is the weighted integral 
along half the circumference of a circle of radius r, 

7r 
that is, VM =~0 V~_~r dO. It may be shown by induc- 
tion that V, = v,d "-~, where v, is a constant. 

• VM = vM-lr S d ~-2dO 
o 

= VM_~r M-I ~ sin~-20 dO. (4) 
0 

The integral in (4) can be evaluated using Wallis's 
formula [Abramowitz & Stegun (1972); equation 
(6.1.49)]. Table 1 contains expressions for VM for 
M = 2 N up to N = 8 .  

The probability distributions of  fiber diffraction 
intensities 

The probability distribution of f~ may be derived 
from the contribution of each atom j to the com- 
ponents A~ of (~ (where each Ai is the real or the 
imaginary part of a G). With no loss of generality, 
we may assume that A~ is real. Then 

Ai = ~ fjJ~(27rRrj) cos [-ncpj + 2rrl(z/ c)j] 
J 

where rj, ~oj and zj are the cylindrical polar coordi- 
nates of atom j, fj is its scattering factor, c is the axial 
repeat of the diffracting particle and J,, is the Bessel 
function of order n. 

Setting the cosine argument to Oj, and assuming 
that the atoms are sufficiently randomly distributed 
for cross terms to cancel, we find 

A~ E z z  = fjJ, , (Z~rRs)cos2(Oj).  
J 

For random values of ~j and zj, and therefore of Oj, 

(A~)= ½ r, f~J2,(2rrRrj) 
J 

=½Y. where 2=Y'f[J2,(2rrRrj) .  
J 

This derivation of Ai differs from that of Wilson 
(1949) in one vital respect: whereas Wilson averaged 
the cosine terms over reflections, here they are 
averaged over atomic coordinates. This is necessary 
because in fiber diffraction 0j is not randomly dis- 
tributed in reciprocal space unless the number of G 
terms in the whole diffraction pattern is very large; 
for a given G, 0j is constant. This difference may 
impose limits on the validity of the derivation for 
structures with very few atoms, but it will not 
affect the analysis for fiber diffraction from 
macromolecules. 

In principle, ~ depends on the values of rj, but in 
practice it may be assumed that the contributing 
atoms are evenly distributed within the known radial 
limits of the diffracting particle. A more precise esti- 

mate of ~ may be obtained if the radial density 
distribution is known and the atomic structure factors 
can be assumed to be equal; the radial density distri- 
bution can usually be calculated from the equatorial 
data, either with the aid of a heavy-atom derivative 
(Caspar, 1956; Franklin, 1956), or by the minimum 
wavelength principle (Bragg & Perutz, 1952; Finch, 
1965). Many useful calculations, however, including 
that of the largest likely values of R, can be made 
without knowing the value of ~. 

Assuming, by the central limit theorem, that Ai is 
normally distributed, we find 

P(Ai)  dA~=(TrY . ) -~ /2exp ( -A~ /~ )dA , .  (5) 

This is equation (12) of Wilson (1949). Combination 
of the 2 N orthogonal parts of f~ gives the joint prob- 
ability distribution 

P(a-----$) d ~ =  (~r Z) -N exp (-~32/Y'.) d~.  (6) 

The step from (5) to (6) assumes that ~ is the same 
for all Bessel orders n, that is, that the average value 
of J,,(2rrRrj) does not depend on n. This is generally 
true, but there are small deviations near the first 
maximum of J,. The derivations will therefore be 
somewhat less accurate for diffraction patterns domi- 
nated by first maxima. Although, for simplicity, many 
diffraction patterns have in the past been analysed as 
if they were so dominated, first maxima do not in 
fact make up a significant part of high-resolution fiber 
diffraction patterns. 

In order to describe observed intensity distributions 
and calculate H ( F )  from (2), P(~3) d~3, the probabil- 
ity that ]aj] lies between ~J and ~J+ d~J, must be derived 
from P((~). Now 

P(q3) d ~ = j" P((~) dr~ 

where the integral is over all points between ~ and 
~ + d q3. Hence 

P (~ )  dq3 = VMP((~) d~, (7) 

where VM (4) is the area of the (M - 1)-dimensional 
surface formed by all points at a distance q3 from the 
origin (Table 1). From (6) and (7), 

P ( ~ ) d ~ = v M ( ~ ) - N ~  M-1 e x p ( - ~ 2 / ~ )  dog. (8) 

This expression describes the distribution of ampli- 
tudes in a fiber diffraction pattern; the corresponding 
expression for intensities is 

P(I )d I=½vM(~rY , ) -NI  s-~ e x p ( - I / ~ ) d I .  

Largest likely R factors 

In order to determine the largest likely value of R 
from (3), H and (H) must be determined. From (2) 
and (8), 

H(Cg) = VM(rrT.)-N [ cgM exp ( _ ~ 2 / ~ )  dog 
0 
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and 

(H(  cb))= '~ H(  cg)p(cg) d ~  
o 

o o  

= v~t(zr E) T M  I ~ t - ,  exp ( -  ~2/E ) 
o 

x ~ cgM exp ( -  q32/Y.) dC.g dog. 
o 

For small values of N, these integrals may be evalu- 
ated by parts (Wilson, 1950), but in general it is 
straightforward and convenient to evaluate them 
numerically. The values of R determined from (3) do 
not depend on Y~. Table 1 includes these values for 
M between 2 and 16, covering the range encountered 
in most fiber diffraction analyses currently in progress. 

Applications 
The R factors in Table 1 allow us to estimate the 
value of R to be expected for a completely wrong 
structure in a fiber diffraction analysis. In practice, 
the number of overlapping terms in (1), and therefore 
the value of M, varies across the diffraction pattern, 
so a weighted average of the R values in the table 
must be used. A reasonable procedure is to assume 
that a Bessel-function term of order n becomes sig- 
nificant when the argument 27rrR is equal to n - 2 ,  
with r equal to the maximum radius of the diffractin~g 
particle. For TMV, with a maximum radius of 90 A 
and 49 subunits in three turns of the viral helix, this 
weighted average is 0.40 between 10 and 5 ~ resolu- 
tion, and 0.34 between 10 and 3 ~ .  For Pfl, with a 
maximum radius of 30 & and 27 subunits in five turns 
(Makowski, 1984), the corresponding figures are 0.48 
and 0.41. 

Helical assemblies with smaller repeating units gen- 
erally have smaller maximum radii, but they often 
have lower symmetry than larger assemblies. These 
two properties have opposite effects on the number 
of terms contributing to the diffracted intensity in (1). 
As a hypothetical example, one might take a non- 
crystalline fiber in which the maximum radius was 
10/I, and the asymmetric unit repeated ten times in 
one turn of the helix. In such a case, the largest likely 
R factor between 10 and 3 ~ resolution would be 0.41. 

Although primarily intended for continuous 
diffraction from non-crystalline fiber specimens, the 
approach described here may equally well be applied 
to crystalline fiber data in which there is a significant 
number of overlapping reflections. For example, the 
diffracted data from chondroitin 4-sulfate (Winter, 
Arnott, Isaac & Atkins, 1978) include five intensities 
derived from three overlapping reflections (M = 5 or 

Table 1. The integral, VM, over all points x in M- 
2 dimensional space such that r 2 = ~ i~=~ xi and the largest 

likely R factors for  N overlapping G terms, with a total 
o f  M components 

F o r  M e v e n ,  M = 2 N .  O d d  v a l u e s  o f  M o c c u r  w h e n  o n e  o f  t h e  G 

t e r m s  h a s  o n l y  a r e a l  c o m p o n e n t ,  f o r  e x a m p l e ,  o n  t h e  e q u a t o r ;  i n  

t h i s  c a s e ,  M = 2 N - 1. 

M V~ R 
2 (circle) 2zrr 0-586 

3 ( sphere )  4~-r 2 0-475 
4 2 ~'2 r 3 0.409 

5 8 7r2r a 0"364 
3 

6 "n'3r 5 0"332 

16 
7 - -  7r 3 r 6 0" 306 

15 

1 
8 - "/7"4 r 7 0"286 

3 

32 7r4r 8 9 - -  0"269 
105 

1 
10 - -  lrSr 9 0"255 

12 

64 7rSrlO 11 - -  0" 243 
945 

1 
12 - -  " h ' 6 r  ' l l  0"232 

60 

128 
13 - -  " B ' 6 r  12 0"223 

10395 

1 
14 - - T r 7 r  13 0"215 

360 

256 
15 - -  7rTr TM 0.207 

135 135 

1 
16 - - T r S r  15 0"201 

2520 

6, depending on whether one of the reflections is from 
a centric zone), 37 from two reflections (M = 3 or 4), 
and 11 from single reflections (M = 2). In this case, 
the weighted averaged largest likely R factor would 
be 0.47. 

The results described here should allow more 
objectivity in comparing results of fiber diffraction 
analyses and assessing the value of atomic parameter 
refinements against fiber diffraction data. It is clear 
that the R factors to be expected in fiber diffraction 
refinement are considerably lower than those in con- 
ventional crystallography; nonetheless, even for sys- 
tems of relatively low symmetry (and therefore large 
numbers of overlapping terms), the largest likely R 
factors are significantly higher than typical levels of 
error in the data. Refinement of molecular models 
against fiber diffraction data is therefore practical, 
but must be evaluated by comparing the R factors 
obtained from the model with the appropriate values 
derived here. 

I thank Rick Millane and Lee Makowski for helpful 
comments on the manuscript of this paper. This work 
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Abstract 

Simple expressions are obtained for the largest likely 
R factor in X-ray fiber diffraction recently derived 
by Stubbs [Acta  Cryst. (1989), A45, 254-258]. These 
generalize the largest likely R factors obtained by 
Wilson [Acta  Cryst. (1950), 3, 397-399] for centric 
and acentric crystals. Expressions are obtained in 
terms of special functions and as finite series that 
simplify the calculation of R factors. These may be 
useful for further analysis and understanding of the 
effects of particle diameter and symmetry and diffrac- 
tion data resolution on the reliability of structure 
determinations. 

I. Introduction 

The R factor is used routinely in crystallography to 
measure the reliability of structure determinations. 
Interpretation of the R factor obtained for a particular 
structure determination is aided by comparing it with 
the value for a completely wrong structure, i.e. a 
structure that is uncorrelated with the correct struc- 
ture. This is referred to as the 'largest likely R factor', 
and Wilson (1950) showed that its value is 2x/2-2 = 
0.828 for a centric crystal and 2 -x /2=0 .586  for an 
acentric crystal. 

Recent advances in data collection and structure 
refinement in X-ray (and neutron) fiber diffraction 
analysis (Millane, 1988) have led to determinations 
of the structures of complex fibrous molecules and 
assemblies (Millane, Walker, Arnott, Chandrasekaran 
& Ratliff, 1984; Namba & Stubbs, 1985; Park, Arnott, 
Chandrasekaran, Millane & Campagnari, 1987; 

0108-7673/89/030258-03503.00 

Stark, Glucksman & Makowski, 1988), and the R 
factor is used as a measure of the reliability of these 
structures also. The molecules in a fiber specimen are 
randomly oriented about the fiber axis so that the 
diffraction pattern is cylindrically averaged. The 
measured intensity is therefore equal to the sum of a 
number of different intensity terms diffracted by a 
single molecule. The number of terms in the sum 
depends on the maximum diameter and symmetry of 
the molecule, and the position in reciprocal space at 
which the intensity is measured. Since the measured 
intensities are sums of individual structure intensities, 
the R factor is in general smaller than in conventional 
crystallography. Stubbs (1989) has recently deter- 
mined the largest likely R factor in fiber diffraction 
analysis as a function of the number of overlapping 
intensity terms. This allows the maximum value of 
the R factor for a particular structure determination 
to be estimated by averaging the values over the 
recorded diffraction pattern where the number of 
overlapping terms varies. This can be applied to both 
continuous diffraction from non-crystalline speci- 
mens and Bragg diffraction from polycrystalline 
specimens. The values obtained allow the R factor 
to be used for an objective assessment of the quality 
of structures determined by fiber diffraction. 

Here, simple analytical and algebraic forms of 
Stubbs's (1989) expression for the largest likely fiber 
diffraction R factor are derived. These may be useful 
for further theoretical analysis of the dependence of 
the R factor on the number of overlapping intensity 
terms, the particle size and symmetry, and resolution 
of the diffraction data. 
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